Blow-up rate for a semilinear reaction diffusion system
نویسندگان
چکیده
منابع مشابه
Blow-up estimates for a semilinear coupled parabolic system
This work deals with a semilinear parabolic systemwhich is coupled both in the equations and in the boundary conditions. The blow-up phenomena of its positive solutions are studied using the scaling method, the Green function and Schauder estimates. The upper and lower bounds of blow-up rates are then obtained. Moreover we show the influences of the reaction terms and the boundary absorption te...
متن کاملNon–simultaneous Blow–up for a Semilinear Parabolic System with Localized Reaction Terms
In this paper, we study positive blow-up solutions of the semilinear parabolic system with localized reactions ut = Δu+ vr + up(0,t), vt = Δv + us + vq(0,t) in the ball B = {x ∈ R N : |x| < R} , under the homogeneous Dirichlet boundary condition. It is shown that nonsimultaneous blow-up may occur according to the value of p , q , r , and s ( p,q,r,s > 1). We also investigate blow-up rates of al...
متن کاملBlow-up for a reaction-diffusion equation with variable coefficient
We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.
متن کاملOn the Blow-up of Solutions to Some Semilinear and Quasilinear Reaction-diffusion Systems
After a brief discussion of known global well-posedness results for semilinear systems, we introduce a class of quasilinear systems and obtain spatially local estimates which allow us to prove that if one component of the system blows up in finite time at a point x∗ in space then at least one other component must also blow up at the same point. For a broad class of systems modelling one-step re...
متن کاملThe Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition
In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2002
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(02)00172-4